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Conformal Transformations

General relativity (GR), as formulated by Einstein in the early 20th century, is spoken
entirely in the language of differential geometry, the study of curves in space (and space itself)
formalized by a host of mathematicians in the 1800’s, most notably B. Riemann and C. F.
Gauss. The wonderful utility of this theory is its appeal to the invariance of physics under
any arbitrary change of local coordinates, known as a general coordinate transformation
(GCT). Much of the work done in GR since its inception has been the practice of inventing
possible metrics for spacetime, and examining physical behavior from the perspective of
differing coordinate systems, though of course the physics itself should not depend on any
local coordinate chart choice. Names have been made for physicists and mathematicians
who discover a particularly convenient coordinate system for a given metric.

Of great use is a class of GCTs known as conformal transformations (CT), which are
defined as preserving the oriented angles between curves at each point. The original and
still primary use of such maps is in the complex plane C, where one of the most important
theorems of complex analysis, the Riemann Mapping Theorem, states that any non-empty
open simply connceted proper subset of C admits a bijective conformal map to the open
unit disk in C. This is of particular use in physics when coupled to another result from
complex analysis: any harmonic function (satisfying Laplace’s equation ∇2f = 0) on an
open set will remain harmonic under a conformal transformation. Hence, harmonic functions
can be defined equivalently on any open set of C. We also have the results that for an
open set U ⊂ C, a function f : U → C is conformal if and only if it is holomorphic and
f ′(z) 6= 0 on U , and any conformal map from the extended complex plane Ĉ = C ∪ {∞}
(conformally equivalent to a sphere through stereographic projection) to itself must be a
Möbius transformation

f(z) =
az + b

cz + d
.

The group of such automorphisms of Ĉ, Aut(Ĉ), is called the Möbius group, and is isomor-
phic to the projective group PSL(2,C) = SL(2,C)/{±I}. From this, we can see that the
Möbius group is a 3-dimensional complex semisimple non-compact Lie group.[4] Incidentally,
the Möbius group shows up in numerous other places in physics: it is also isomorphic to the
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proper, orthochronous (restricted) Lorentz group SO+(1,3), a relationship that we will ex-
amine later on, which also connects deeply with spin groups and the use of Weyl sinors in
the Dirac equation and supersymmetric theories. It also forms the group of orientation-
preserving isometries of hyperbolic 3-space H3 (and if restricted over the reals to PSL(2,R),
hyperbolic 2-space H2): if we use the Poincaré ball model and identify the unit ball in R3

with H3, then we can think of the Riemann sphere as the “conformal boundary” of H3. This
was one of the first observations leading to the AdS/CFT correspondance conjecture, which
will also be addressed later. It is fairly straightforward to generalize the Möbius group to
higher dimensions, so that Möb(n) ∼= SO+(1, n+ 1) is the group of all orientation-perserving
conformal isometries of the sphere Sn.[2]

Of particular use to us will be the classification of symmetries related to conformal
transformations, since these symmetries may give us Killing vectors in the extension to
differential geometry. Liouville has a theorem about conformal mappings in Euclidean space
stating that any smooth conformal mapping on a subset of Rn with n > 2 can be expressed as
a composition of translations, similarities, orthogonal transformations, and inversions (notice
that this does not hold for n = 2: the Riemann Mapping Theorem asserts that all simply
connected planar domains are conformally equivalent). This theorem extends naturally to
any space of dimension n > 2, so conformal transformations are generated by translations
(parabolic transforms), rotations (elliptic transforms), dilations or scalings (hyperbolic or
“homothetic” transforms), and so-called “special conformal transformations” (loxodromic
transforms), which amount to reflections and inversions through a sphere. The group and
algebra structure of these transformations are discussed later on.

Needless to say, the universality of conformal transformations, similarities, and sym-
metries suggests that they are likely of great importantance as a fundamental concept in
physical theories that may go beyond our current understanding of our universe, so special
attention should be given to their study, classification, and use.

Conformal Geometry

This structure is easily extended to the topic of differential geometry, with a slight modifi-
cation of terminology. A conformal manifold is a differentiable manifold equipped with an
equivalence class of Riemannian or pseudo-Riemannian metrics, where

h ∼ g iff hµν(x) = λ2(x)gµν(x)

In other words, the two conformal metrics are identical up to a Weyl transformation, a
local change of scale. While it is possible to imagine transformations which are conformal
(angle preserving) but not Weyl (scale-changing), they are bizzare and uncommon, so the
terms “Weyl” and “conformal” transformations are often used interchangeably. A conformal
metric is conformally flat if one of its representative metrics is flat (Riemann curvature tensor
vanishes). Sometimes we might only be able to find a metric in the conformal class that is
flat in an open neighborhood of each point, or locally. In two dimensions, every conformal
metric is locally conformally flat. In higher dimensions, we may concern ourselves only with
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the trace-free part of the curvature tensor, since this part is not concerned with how volumes
change, but rather only how a shape is distorted under a GCT. In 3 dimensions, a necessary
and sufficient condition for conformal flatness is the vanishing of the Cotton tensor:

Cµνρ = ∇αW
α
µνρ = −1

2

[
∇ρRµν −∇νRµρ +

1

2(n− 1)
(gµρ∇νR− gµν∇ρR)

]
while if n ≥ 4, it is the Weyl tensor that must vanish:

Wµνρσ = Rµνρσ −
2

n− 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

2

(n− 1)(n− 2)
Rgµ[ρgσ]ν

Under a conformal transformation, the Weyl tensor is completely invariant (the Cotton
tensor changes by a total derivative). The only other conformally invariant tensor which is
algebraically independent of the Weyl tensor is the Bach tensor:

Bµν = 2∇α∇βWαµνβ +WαµνβR
αβ,

which arises often in the equations of motion for conformal gravity.
In 1913, swedish physicist G. Nordström built a theory of gravity incorporating an iden-

tically vanishing Weyl tensor which showed great theoretical promise, even to Einstein, who
at this time was developing his general theory of relativity. Alas, experimental evidence sup-
ports instead the GR vanishing of the Ricci tensor and scalar in vacuum, and not the Weyl
tensor and Ricci scalar as suggested by Nordström. Nevertheless, having a metric that is
scale-invariant is an appealing idea, in that it seems natural that no particular length scale
should be preferred by the universe (except perhaps the Planck scale, but of course that
introduces quantum effects that might not best be dealt with in the language of manifold
diffeomorphisms, and conformal symmetry may be badly broken anyway).

Conformal symmetry can also be of great use in deciding on coordinates to use even
in non-conformally invariant spacetimes. For example, the use of light-cone diagrams in
special relativity’s Minkowski space is intuitively easy to grasp and understand. It would be
wonderful if we could use these same diagrams in the setting of general relativity, where our
metric may be more complicated, and light rays may no longer be at 45◦ angles. To resolve
this issue, we may examine a locally conformally equivalent metric in a conformal or Penrose
diagram, where the actual metric is transformed conformally such that null paths once again
form 45◦, allowing the causal structure to be more transparent. The invariance of null paths
under a conformal transformation plays a great role in examining massless particle theories,
for after all, they must follow these paths. By transforming a given metric to one in which
timelike and spatial infinities are only a finite coordinate away allows us to draw a diagram
of the entire spacetime in a compact setting, illuminating the entire causal history.

Incidentally, when we apply a local gauge transformation to massless particles, it has
exactly the same structure as introducing a spin connection that maintains local confor-
mal invariance. This emerges because massless particles move on the light cone, and these
are left invaraint not only by Poincaré symmetries but the full 15-dimensional conformal
group SO(4, 2), whose universal covering group is SU(2, 2). Since we know that SU(2, 2)
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is generated by the 15 Dirac matrices {γ5, γµ, γ5γµ, σµν}, its fundamental representation is
a fermionic field, and a 4-component Dirac spinor is irreducible under the conformal group
just as it is under the Poincaré group.[7]

Conformal Symmetries

Let’s more closely examine the symmetries generated by the conformal group in 4 dimensions
(it can easily be generalized to more). We first pick out a representation for the generators of
the algebra, starting with the standard ones for the Poincaré group and adding the additional
conformal transformation generators:

Mµν = i (xµ∂ν − xν∂µ)

Pµ = −i∂µ
D = −ixµ∂µ

Kµ = i
(
x2∂µ − 2xµxν∂

ν
)

where Mµν are the standard Lorentz group generators (rotations and boosts), Pµ generates
translations, D generates dilations (sometimes called “dilatations”), and Kµ generates the
special conformal transformations that take

xµ → xµ − aµx2

1− 2a · x+ a2x2

The algebra structure is given by the commutators:

[Pρ,Mµν ] = i (ηρµPν − ηρνPµ)

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)

[D,Kµ] = −iKµ

[D,Pµ] = iPµ

[Kµ, Pν ] = 2iηµνD − 2iMµν

[Kµ,Mnuρ] = i (ηµνKρ − ηµρKν)

The first two commutators along with [Pµ, Pν ] = 0 define the Poincaré algebra iso+(1, 3) (i
meaning “inhomogeneous”), which is the 10 dimensional algebra of isometries of Minkowski
space. The Poincaré group is the affine group of the Lorentz group (i.e., the semidirect prod-
uct of translations with the Lorentz group: ISO+(1, 3) ∼= R1,3oSO+(1, 3)). The geometry of
Minkowski space is defined by the Poincaré group: it is a homogeneous space for the group.
We might also introduce two other maximally symmetric spacetimes at this point: de Sitter
space dSn and anti-de Sitter space AdSn, whose topologies and isomorphisms as quotient
groups are R1×Sn−1, O(1, n)/O(1, n−1) and S1×Rn−1, O(2, n−1)/O(1, n−1) respectively
(at least with PT symmetry; if we don’t have these, the spaces become quotients of spin
groups). We can see that they bear a great resemblance to a sphere, whose quotient structure
for comparison is Sn = O(n− 1)/O(n). We will return to these spacetimes again later on.
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The 10 generators of the Lorentz group (algebra elements Pµ and Mµν) are in one-to-one
correspondance with the Killing vectors that can be obtained from Killing’s equation

∇µχν +∇νχµ = 0

using the Minkowski metric ηµν . If we wish to extend this to the conformal group, we will
need 5 additional Killing vectors for dilations and special conformal transformations. These
are none other than the generators D and Kµ. Incidentally, another way to determine these
additional Killing vectors is to use the fact that if

gµν = eα(x)gµν ,

and χµ is a Killing vector of the original metric, then it is a conformal Killing vector for the
barred metric; that is, it satisfies the conformal Killing equation

∇µχν +∇νχµ = (∇σα)χσgµν

Solving this, we find our most general conformal Killing vector in n dimensions (any signa-
ture):

χµ = aµ + ωµνxν + bxµ + cν
(
2xµxν − ηµνx2

)
with (aµ, ωµν , b, cν) a total of (n+1)(n+2)/2 parameters: n translations, n(n−1)/2 Lorentz
transformations, 1 dilation, and n special conformal transformations. If the dimension of
the set of conformal Killing vectors is 15, then the space is conformally flat. If not, then the
maximal dimension is 7.[10] From Noether’s theorem, these continuous symmetries should
have some conserved quantity associated with them, and in fact we know that 4-momentum
and angular momentum are conserved from the Poincaré subalgebra symmetry. What about
the explicitly conformal parts? Well, a problem arises when we consider the commutator
[D,Pµ] = iPµ: this tells us that

e−iαDP 2eiαD = e−2αP 2

so that if we have some 1-particle state of mass m, P 2|P 〉 = m2|P 〉 and P 2|P 〉 = e2αm2|P 〉
(we are using the fact that P 2 is a quadratic Casimir invariant of the Poincaré group to
label mass states). But if local scale invariance is not broken, we would have e−iαD|0〉 =
|0〉, indicating that |P 〉 and |P 〉 belong to the same Hilbert space, implying that the mass
spectrum is either continuous, or all masses vanish! This is not what we see in nature,
so we must conclude that P 2 is not a Casimir invariant for the full conformal group, and
that conformal symmetry must be broken, at least slightly. Hence, in our own universe, at
least at low energy, we won’t have conserved Noether currents corresponding to the dilation
(or special conformal transformation not shown here) symmetry. Even without an explicit
conformal symmetry, we can still put it to good use in a theory of gravity, show that a
conformal symmetry can help explain rotation curve anomalies for galaxies, and perhaps
hint at a possible theory of quantum gravity.
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Gravity

The simplest metric theory known to have conformal symmetry is a “Weyl-squared” theory,
which has as its action

I =

∫
d4x
√
−gWµνρσW

µνρσ.

Putting this action in terms of the curvatures we usually see in the Einstein theory, this
becomes

I =

∫
d4x
√
−g
[
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2

]
which unfortunately contains fourth order products and derivatives of the metric. Why this
should be problematic will be discussed later. This result can be put in a more useful form
following the idea of C. Lanczos to use an infinitesimal conformal transformation. The result,
after sweeping away some total divergences in the integral, is∫

d4x
√
−gWµνρσW

µνρσ =

∫
d4x
√
−g
[
RµνR

µν − 1

3
R2

]
a much cleaner result, allowing for equations of motion consistent with Rµν = 0. If we vary
the metric, we obtain

δ

∫
d4x
√
−gWµνρσW

µνρσ =

∫
d4x
√
−gWµνδg

µν

where Wµν is a complicated expression involving the Ricci tensor, scalar, and their deriva-
tives. In a space with matter, we have Wµν ∝ Tµν .[12] By setting the variation to zero, we
have an equation of motion known as the Bach equation (the Bach tensor Bνρ was introduced
earlier):

Bνρ = 2∇µ∇σW
µ
νρ
σ +W µ

νρ
σRµσ = 0

which has conformally flat metrics as its solutions. If we assume a static, spherically sym-
metric metric in vacuum

ds2 = −b(ρ)dt2 + a(ρ)dρ2 + ρ2dΩ2

it can be shown [8] that this is conformally equivalent to the line element

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2dΩ2

and that using the actual form of the Weyl tensor, we may solve

B(r) = 1− β(2− 3βγ)

r
− 3βγ + γr − kr2

without any approximation at all. The relevant components of the Weyl tensor are pro-
portional to β(2 − 3βγ + γr)/r, which is conformally flat when β = 0. The solution then
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appears to represent a massive body embedded in a conformally flat spherically symmetric
space. This means that conformal flatness is broken by the mere presence of the massive
body, even at infinity, suggesting a gravitational origin for intertial mass, and showing that
the theory allows for the breaking of conformal symmetry in its own solution.[8]

Note that if γ = k = 0 and β = m, this is exactly the Schwartzchild metric from
the ordinary flat space Einstein-Hilbert theory. If we don’t set k = 0, then this is the
Schwartzchild solution in a de Sitter background with R = −12k, where in the Einstein
theory such a term could only come from a cosmological constant. In the Weyl theory, the
de Sitter solution is a vacuum solution, and so does not involve any cosmological constant at
all. As such, we should think of the parameter γ as measuring the difference between a Weyl
theory and an Einstein theory with a cosmological constant, so that for small γ, the two
should be very much alike. For small r, both have a 1/r gravitational potential consistant
with Newtonian gravity. At cosmological scales, the cosmological constant term dominates.
However, at intermediate scales, we expect to see variations between the theories due to the
γr term in the Weyl metric.[7]

One of these variations could be the observed discrepancy between velocities of galactic
rotation and those predicted using GR. It has been noticed that the speeds of stars towards
the edges of galaxies are much greater than what they should be considering the amount of
observed mass within the galaxy. This was one of the primary motivations for the concept
of dark matter, a type of non-luminous gravitating matter that seems to permeate the area
around galaxies in enormous spherical halos. However, if we expect a linear potential to be
present at large scales due to conformal effects from using the Weyl action, we should see a
potential around a star of

V ∗(r) = −β
∗c2

r
+
γ∗c2r

2

per unit solar mass, with β∗ the familiar M�G/c
2 = 1.48× 105 cm. Mannheim and O’Brien

[9] fit this to the observed rotation patterns of 11 (original paper, now 134 at the time of
this writing) galaxies and found a good fit with γ∗ = 5.42× 10−41 cm−1 with no recourse to
dark matter whatsoever.

Now, there is a caveat to this seemingly amazing result. The Weyl gravity theory, being
quadratic in the curvature tensor, is actually fourth order in the metric derivatives (linearize
the metric and you’ll see �2hµν showing up in the equations of motion). Such higher (than 2)
derivative theories have a built in instability first studied by Ostrogradski: the Hamiltonian
obtained in the canonical way will be linear in n− 1 conjugate momenta if the Lagrangian
depends on the nth derivative of a coordinate.[13] Hence, we expect to see Hamiltonians that
are generally bounded below if the Lagrangian depends on no more than the first derivative of
the metric. In the Weyl theory, this dependence on the fourth derivative implies the existence
of ghosts with unbounded negative energy states that would be continuously popping out
of the vacuum. One attempt to remedy the situation is to employ the Hawking-Hertog
formalism and integrate out the ghosts in a Euclidean path integral technique[3]. Another
uses the Pais-Uhlenbeck oscillator model to determine a Hilbert space with a positive-definite
inner product to ensure non-negative energies[1] (though this is contended[11]). Occasionally,
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the fourth order terms will cancel, such as in Gauss-Bonnet gravity, in which the terms
involving more than two derivatives either cancel exactly, or reduce to some topological
surface term. In general, however, all of these f(R) theories (depending on more than a
linear term in a curvature scalar or tensor) are usually beset by ghosts and unbounded
Hamiltonians. It remains to be seen if there is a general solution to the problem in the
context of gravity and relativity.

Cosmology/Quantum Gravity

As a final aside, I think it is worth mentioning how conformal field theory ties in. We’ve
seen how introducing a (massless) fermion’s spin connection to maintain local conformal
invariance behaves exactly like the gauge connection needed to ensure local gauge invariance.
As such, we can define a conformal field theory with a similar formalism to the standard
quantum theory of fields with a gauge invariance prinicple. As it turns out, (super-)conformal
field theory without gravity in 4 dimensions can be viewed as the boundary of a maximally
symmetric space (in this case, the 5 dimensional anti-de Sitter space AdS5). To see this,
take the half-space metric for AdS5

ds2 =
1

z2
(
dz2 + ηµνdx

µdxν
)

and perform a Weyl transformation to

ds2 = dz2 + ηµνdx
µdxν

which is Minkowski at z = 0. This is the famous AdS5/CFT4 correspondance (I’ve oversim-
plified a bit: technically we need an N = 4 supersymmetric CFT on the boundary, and we
should use AdS5×S5 or some other cross with a closed manifold). Hence, it is as though we
can either do “regular” quantum field theory in 4 dimensions with matter fields, gauge fields,
and the like, OR we may do a 5 (really 10) dimensional calculation with gravity. Which is
easier usually depends on which coupling constant regime we’re examining: large coupling
in one space will correspond to small coupling in the other, a feature we call duality. Since
anti-de Sitter (as well as de Sitter and Minkowski) space is a solution to the conformal met-
ric, we see that a conformal structure exists on the bulk space and its boundary, indicating
that conformal considerations are ubiquitous in both gravitational and quantum theories.
Indeed, J. Maldacena, the physicist who first noticed the AdS/CFT correspondance, de-
rived Einstein gravity from conformal gravity and obtained the semiclassical wavefunction
of asymptotically dS or Euclidean AdS spacetimes.[5] An attempt at quantum conformal
gravity has also been attempted by Mannheim with promising results.[6] The sheer univer-
sal prevalence (even if a broken symmetry) of conformal/Weyl structures in modern physics
heralds its importance in future studies.

Conclusion

Demanding conformal symmetry or invariance of a metric may seem like a strict imposition,
and may be problematic in having an unbounded energy spectrum, but it seems to produce
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results that may be consistent with our actual universe without recourse to dark matter
and suggests that conformal symmetries may play an important role in dual theories and an
understanding of physics beyond the standard model. We see remarkable similarities between
gauge invariance and conformal invariance, and in conformal field theories on boundaries of
vacuum solutions with constant curvature (AdS/CFT correspondance). Perhaps a Weyl
action will prove in the end to produce spacetime solutions more consistent with large-scale
gravitation than the current Einstein-Hilbert action, much as general relativity supplanted
and expanded on the Newtonian view 100 years ago.
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