Now, on to Mesozoic Marine Reptiles

NOT DINOSAURS!

- They are reptiles, but some have adopted different skull fenestration
- "Euryapsid" and "Anapsid" conditions are likely modified Diapsids
- First reptiles returned to the sea in the Permian (Mesosaurus)

How they are related:

Morphology

- 4 basic body plans (Baupläne):
 - (a) Thunniform advanced ichthyosaur
 - (b) Long neck/small head plesiosaur
 - (elasmosaur)
 - (c) Short neck/big head pliosaur
 - (d) Undulatory mosasaur (and basal ichthyosaur)
- + "functional group 3" after Robert L. Carroll ("swimming lizards")

Morphological Trends

- Limbs become rigid, often with hyperphalangy (many phalanges)
- Polydactyly in ichthyosaurs

Morphological Trends

- (A) *Merriamia* (basal ichthyosaur) manus
- (B) Opthalmosaurus(Jurassic ichthyosaur)manus
- (C) *Elasmosaurus* (Cretaceous plesiosaur) manus
- (D) Nothosaur pes
- (E) Mosasaur pes

Morphological Trends

- Thoracic stiffening a usual trend
- Lateral flexion directed posteriorly, or propulsion moved paraxially

Carrier's Constraint

- Because of their sprawling gait, reptiles cannot breathe and run at the same time
- Same applies to marine reptiles with lateral flexion (they breathe air!)
- Solved by moving propulsion posteriorly, stiffening thorax, or moving limbs independently of spine

Triassic Seas

- Pangea beginning to break up
- Marine ecosystems recovering from Permian extinction (95% extinction)
- Evolution of new coccolithophorids, dinoflagellates, algae/coral symbionts, and planktonic foraminifera allowed carbonate sedimentation of deeper waters

Mesosaurs

- The first aquatic "reptiles" (early Permian)
- Anapsids-not "true" reptiles (Eureptilia~Diapsida)
- Provided evidence for continental drift theory
- Small, needle-like teeth for small fish or straining for invertebrates
- Thickened ribs (pachyostosis)

Thalattosauria

 Thalattosaurs are basal Saurians (just outside lepidosaurs and archosaurs), or basal Sauropterygians that were mostly aquatic (shallow marine) and ate fish/shellfish

 Askeptosaurs (sister taxon) are thought to have hunted deeper, as they have larger eyes/sclerotic rings

Both groups have webbed feet, not paddles, and are

found in the Middle to Late Triassic

Pleurosaurs

- Aquatic sphenodonts (lepidosaurs) that lived in the Late Jurassic to Early Cretaceous
- Elongate, streamlined body only adaptation to marine life

Archosaur Marine Reptiles

Tanystropheus

- 20 foot mid-Triassic archosaur (prolacertiform)
- Only had 10 neck vertebrae, despite 10 foot neck
- Most likely a piscivorous "reverse amphibean" snatching fish from shore

Crocodylomorphs

Crocodylomorphs

"Crocodile-shaped" aquatic reptiles have existed since the late Triassic

Generally inhabit shallow swampy areas, though

some have taken to open ocean

Crocodylomorph Ecology

All extant (and probably extinct)
 crocodylomorphs are ambush predators,
 and several morphological characteristics
 suggest this (can you guess some?)

Crocodylomorph Anatomy

- Very powerful jaw adductor muscles (so much muscle mass that almost none is given to abduction)
- Bite force is more than 5,000 pounds per square inch (human = 150 psi, Rottweiler = 335 psi, great white shark = 690 psi, hyena = 800 psi)
- T. Rex, however, had a bite force of 40,000 psi, and Dunkleosteus had 80,000!

Phytosaurs

 Late Triassic crocodylomorphs-not crocodiles (cousins, though, through the crurotarsal pod articulation)

Champsosaurs • Semi-aquatic

- Semi-aquatic crocodylomorphs that lived from the Jurassic to Oligocene
- Hunted small fish and invertebrates in rivers, swamps, and estuaries

Pholidosaurids and Dyrosaurids

- Early Cretaceous crocodylomorphs that could reach enormous size
- Sarcosuchus could be as long as a city bus, weigh up to 9 tons, and is known to have eaten dinosaurs

Teleosaurs

Early Jurassic –Early Cretaceous

 Marine crocodylomorphs similar to metriorbynchide

metriorhynchids

Archosaurs (Thalattosuchia)

Metriorhynchidae

- Aquatic crocodyliforms
 from Middle Jurassic to Cretaceous
- Lost osteoderms (armor scutes) and had small caudal fin

Only archosaurs completely adapted to marine

Modern Crocs

- Modern crocodylomorphs are found in 3 families of 23 species
- Alligators, crocodiles, caimans, gharials
- Some may grow to nearly 30 feet long, exemplifying the slow, continual growth rate of primitive reptiles

Ichthyosaurs

Claudiosaurus

Lived much as marine iguanas do today A partially marine diapsid of the Late Permian, possibly an early relative of ichthyosaurs and Saurians

Where Do Ichthyosaurs Come From?

 Hupehsuchus may be a basal ichthyosaur from mid-Triassic China

Ichthyosauromorpha

Ichthyosaurs were marine reptiles with a fish or dolphinlike morphology (basal forms different) that lived from the Early Triassic to the mid Cretaceous

Ichthyosaur Morphology

Typical ichthyosaur morphology (not basal)

- First fossil forms already entirely aquatic
- Difficult to determine phylogenetic relationships
- Early forms small, anguilliform, shallow marine hunters

Died out in Middle Triassic to be replaced by true

ichthyosaurs

Ex: Cymbospondylus, Utatsusaurus

- Utatsusaurus is the earliest known Ichthyopterygian from the middle Triassic
- Ryosuke Motani (from Cal!)
 determined that ichthyosaurs
 are close cousins to primitive
 diapsids from this fossil

- Chaohusaurus, from the Early Triassic of China
- neural spines of tail not strongly differentiated
- relatively unmodified forefin

 Cymbospondylus lacked a dorsal fin and lunate caudal fin

 Though primitive, it was one of the larger ichthyopterygians (18-30 feet)

Shonisaurus,
 another
 Shastasaur, grew
 to over 50 feet in length

Note no tail bend; very long skull; long thin fins; long ribs, expanded distally; also enlarged pelvis and hindlimb; vertebral spines uniform after pectoral "hump"

Mixosaurus is thought to be a transistional form bewteen
 Triassic ichthyopterygians and true ichthyosaurs (they possess a dorsal fin, but no lunate caudal fin)

Next Week:

- Advanced ichthyosaurs (Jurassic-Cretaceous)
- Ichthyosaur extinction