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 Why solar?
• No pollution (aside from 

manufacture/disposal)

• Abundant supply (during clear 
weather/daytime)

• (Somewhat) Easy to collect/use

• Can be used to create electricity or H2 or 
heat

• Most other renewables are indirectly 
solar power anyway (wind, hydroelectric, 
tidal, biofuel, etc.)

 At 15% efficiency, (150 km)2 (about 
8,700 mi2) of Nevada would provide 
electricity for the whole US, assuming 
2 m2 supports 1 m2 PV (for structure, 
angle, etc.)

 At 10% efficiency, 17,000 mi2 across 
the US would be enough

Relevant Data

Average US annual 

electricity consumption 

(2008)

3.96 trillion kWh

(450 GW)

Average annual surface 

irradiance (NV)

2300 kWh/m2

Average annual surface 

irradiance (US)

1800 kWh/m2



 The Spectrum

• About 1.3 kW/m2 of solar energy reaches 

upper atmosphere – about 1 kW/m2 reaches 

surface

• Peak arrival of energy at 504 nm (2.48 eV), 

peak arrival of photons at 879 nm (1.41 eV)

 Photosynthesizing organisms and 

terrestrial eyesight have evolved to take 

advantage of ~500 nm light





 Semiconductors

• Some have band gaps in optical range (Si 

has 1.1 eV), and can absorb solar photons

• Absorbed photons generate excitons, 

bound hole-electron pairs (binding energy 

about 0.4 eV)

• Dope with donor materials (P, As) to create 

n-type semiconductor (free electrons); dope 

with acceptor materials (B, Ga) to create p-

type (free holes)



 PV Diode

• When an n- and p-

type semiconductor 

are placed together, 

electrons flow from 

p-type to n-type, but 

not the other way

• The holes and 

electrons drift 

towards electrode 

contacts, where they 

are extracted to do 

work



 The Cell

• We coat the Si with an antireflective coating to 

reduce reflection loss to <5%

• Place a transparent (ITO=In2-xSnxO3 or 

something IR transparent) electrode or small-

area contact grid (don’t block light) across top 

and bottom to collect carriers

• Cover with glass for protection from elements

 Voila! Generic 1st generation solar cell, up 

to 15% efficient



 Losses
• Several ways in which energy is lost:

1. Low energy photons pass through 
cell without creating exciton

2. High energy photons lose excess 
energy to phonons (heat)

3. Losses at junction

4. Losses at contact

5. Electron-hole recombination (and 
exciton decay)

 First 2 account for 70% of loss 
alone
• If we try to make bandgap smaller to 

use more photons (higher current), 
strength of electric field decreases, 
lowering power (P=I*V)

• Maximum power at band gap of 1.4 
eV

• Multi-junction devices have several 
back-to-back cells of different gaps 
(up to 43% efficient)



 Problems

• Often requires growth of large single crystal 

Si – clean room, microfab…expensive 

(>$2.50/W)

• Fragile and unable to accommodate curved 

surfaces

• Can’t alter properties (band gap, mobility, 

etc.) very much

Maybe there’s another way…



 Molecules
• Certain classes of organic molecules have excitable 

energy levels in the optical range

• “Band gap” is now the HOMO-LUMO gap: highest 
occupied molecular orbital to lowest unoccupied 
molecular orbital

• Generally require conjugation, an extended network of 
delocalized π-bonds, for optical excitations



 Molecules
• Extensive conjugation also enhances the absorption 

coefficient

• Need not be linear – rings, alkyl groups, and polar 
additions enrich the spectra

• This conjugation gives many familiar biochemicals
their color

 Example: β-carotene
• Absorption peak at 455 nm (HOMO-LUMO gap of 2.7 

eV) implies absorption in cyan, compliment is orange, 
the color of carrots



 Natural Occurrences
• Conjugated organic molecules provide basis for energy 

entrance into biosphere: cyclic tetrapyrroles, like chlorophyll

• Plants and other photosynthesizing organisms also use 
accessory pigments (like carotenoids) to capture other 
wavelengths

 How does the excitation move, and how does this do 
work?



 Excitons
• Once the electron is excited to the LUMO, it and the 

hole left behind are free to diffuse throughout the 
delocalized π-network as a bound pair, or exciton

• Without subsequent charge separation, the exciton
decays quickly as the hole and electron recombine

 Charge Separation
• If both a donor and acceptor-type molecule are 

present, an exciton at the interface may separate into 
an electron (free to drift and diffuse in the acceptor [A] 
and a hole in the donor [D])

• Provided they don’t meet and recombine, the electron 
and hole are mobile in the A and D respectively, and 
can be extracted as current at electrodes, just like the 
inorganic case



 Donor Molecule

• The donor is usually the species 

that absorbs the light, and so is an 

extensively conjugated system

• Often used are polymers, such as 

P3HT (poly-3-hexylthiophene)

 Acceptor Molecule

• Needs to conduct electrons well, 

so often PCBM (“buckyballs”) are 

used

• Sometimes both species can 

absorb light and generate excitons



 Bulk Heterojunction
• Roughly 100 nm thick

• The D and A can be mixed uniformly, heated, and allowed 
to cool to form domains (annealing)

• Our question was: What does the heterojunction
morphology do to efficiency?

 Balancing Factors
• If the domains of D and A are too large, excitons will decay 

before they reach an interface

• If there is too much interface, the separated carriers will 
meet and recombine

• If there is not a pathway to reach the electrodes, the 
carriers get trapped, and do no work

• There must be an optimal structure (or class of 
structures)!







 The Benefits

• Organic chemicals are cheap ($0.10-0.50/W)

• Flexible design (someday “paint” might work)

• Very customizable gaps, mobility, spectra, etc.

• Multi-junction design possible

 The Challenges

• Poor efficiency (6.8% so far…Multi-junction?)

• Can degrade over time (A good thing?)

• Don’t produce as much current
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 Notes

• PCBM = [6,6]-phenyl-C61-butyric acid methyl 

ester



 Simulations
• Modeled the system as a lattice of D or A, with 

hopping probabilities/rates

• As predicted, large regions with little interface 
and small regions with too much interface have 
poor internal quantum efficiency (carrier pairs 
extracted per photon absorbed)

• Columns of A embedded in D fared best, but 
most microstructures were consistent as long 
as the proportion of same-type neighbors was 
between 0.65 and 0.8

 Thermal Damage
• We could also take a suboptimal ordered 

structure and damage it to create more 
interface

• This led to structures of comparable efficiency 
without the need for nanostructuring

Parameter Value

Carrier Separation Rate 1000 ps-1

Carrier Recombination Rate 10 ps-1

Exciton Decay Rate 10 ps-1 (5 nm)

Exciton Generation Rate 50 nm-2 ps-1

Carrier Hopping Rate ~1 nm ps-1

Electric Field Bias 5 V μm-1

Temperature 0.025 eV



 Molecules often used in MJOPV (vapor deposition)



 Molecules often used in MJOPV (solution processed)


