Kitran Colwell – Fall 2009 – Physics 211A

Solar Energy

- ♦ Why solar?
 - No pollution (aside from manufacture/disposal)
 - Abundant supply (during clear weather/daytime)
 - (Somewhat) Easy to collect/use
 - Can be used to create electricity or H₂ or heat
 - Most other renewables are indirectly solar power anyway (wind, hydroelectric, tidal, biofuel, etc.)
- At 15% efficiency, (150 km)² (about 8,700 mi²) of Nevada would provide electricity for the whole US, assuming 2 m² supports 1 m² PV (for structure, angle, etc.)
- At 10% efficiency, 17,000 mi² across the US would be enough

Relevant Data	
Average US annual electricity consumption (2008)	3.96 trillion kWh (450 GW)
Average annual surface irradiance (NV)	2300 kWh/m ²
Average annual surface irradiance (US)	1800 kWh/m ²

Solar Energy

♦ The Spectrum

- About 1.3 kW/m² of solar energy reaches upper atmosphere – about 1 kW/m² reaches surface
- Peak arrival of energy at 504 nm (2.48 eV), peak arrival of photons at 879 nm (1.41 eV)
- Photosynthesizing organisms and terrestrial eyesight have evolved to take advantage of ~500 nm light

Semiconductors

- Some have band gaps in optical range (Si has 1.1 eV), and can absorb solar photons
- Absorbed photons generate excitons, bound hole-electron pairs (binding energy about 0.4 eV)
- Dope with donor materials (P, As) to create n-type semiconductor (free electrons); dope with acceptor materials (B, Ga) to create ptype (free holes)

PV Diode

- When an n- and ptype semiconductor are placed together, electrons flow from p-type to n-type, but not the other way
- The holes and electrons drift towards electrode contacts, where they are extracted to do work

♦ The Cell

- We coat the Si with an antireflective coating to reduce reflection loss to <5%
- Place a transparent (ITO=In_{2-x}Sn_xO₃ or something IR transparent) electrode or smallarea contact grid (don't block light) across top and bottom to collect carriers
- Cover with glass for protection from elements
- Voila! Generic 1st generation solar cell, up to 15% efficient

- ♦ Losses
 - Several ways in which energy is lost:
 - 1. Low energy photons pass through cell without creating exciton
 - 2. High energy photons lose excess energy to phonons (heat)
 - 3. Losses at junction
 - 4. Losses at contact
 - 5. Electron-hole recombination (and exciton decay)
- First 2 account for 70% of loss alone
 - If we try to make bandgap smaller to use more photons (higher current), strength of electric field decreases, lowering power (P=I*V)
 - Maximum power at band gap of 1.4 eV
 - Multi-junction devices have several back-to-back cells of different gaps (up to 43% efficient)

Problems

- Often requires growth of large single crystal Si – clean room, microfab...expensive (>\$2.50/W)
- Fragile and unable to accommodate curved surfaces
- Can't alter properties (band gap, mobility, etc.) very much
- ♦ Maybe there's another way…

Molecules

- Certain classes of organic molecules have excitable energy levels in the optical range
- "Band gap" is now the HOMO-LUMO gap: highest occupied molecular orbital to lowest unoccupied molecular orbital
- Generally require conjugation, an extended network of delocalized π-bonds, for optical excitations

♦ Molecules

- Extensive conjugation also enhances the absorption coefficient
- Need not be linear rings, alkyl groups, and polar additions enrich the spectra
- This conjugation gives many familiar biochemicals their color

 Absorption peak at 455 nm (HOMO-LUMO gap of 2.7 eV) implies absorption in cyan, compliment is orange, the color of carrots

Natural Occurrences

- Conjugated organic molecules provide basis for energy entrance into biosphere: cyclic tetrapyrroles, like chlorophyll
- Plants and other photosynthesizing organisms also use accessory pigments (like carotenoids) to capture other wavelengths

How does the excitation move, and how does this do work?

Excitons Excitons

- Once the electron is excited to the LUMO, it and the hole left behind are free to diffuse throughout the delocalized π-network as a bound pair, or exciton
- Without subsequent charge separation, the exciton decays quickly as the hole and electron recombine
- ♦ Charge Separation
 - If both a donor and acceptor-type molecule are present, an exciton at the interface may separate into an electron (free to drift and diffuse in the acceptor [A] and a hole in the donor [D])
 - Provided they don't meet and recombine, the electron and hole are mobile in the A and D respectively, and can be extracted as current at electrodes, just like the inorganic case

Donor Molecule

- The donor is usually the species that absorbs the light, and so is an extensively conjugated system
- Often used are polymers, such as P3HT (poly-3-hexylthiophene)
- Acceptor Molecule
 - Needs to conduct electrons well, so often PCBM ("buckyballs") are used
 - Sometimes both species can absorb light and generate excitons

♦ Bulk Heterojunction

- Roughly 100 nm thick
- The D and A can be mixed uniformly, heated, and allowed to cool to form domains (annealing)
- Our question was: What does the heterojunction morphology do to efficiency?

Salancing Factors

- If the domains of D and A are too large, excitons will decay before they reach an interface
- If there is too much interface, the separated carriers will meet and recombine
- If there is not a pathway to reach the electrodes, the carriers get trapped, and do no work
- There must be an optimal structure (or class of structures)!

0

Fig 5 (a): Highly folded Hetero-junction, (b): Hetero-junction with controlled growth

- 1: Incident light creates exciton
- 2: Hole diffusing towards electrode
- 3: Hole trapped in an isolated island of organic molecule
- 4: Electron moving towards electrode

The Benefits

- Organic chemicals are cheap (\$0.10-0.50/W)
- Flexible design (someday "paint" might work)
- Very customizable gaps, mobility, spectra, etc.
- Multi-junction design possible
- The Challenges
 - Poor efficiency (6.8% so far...Multi-junction?)
 - Can degrade over time (A good thing?)
 - Don't produce as much current

Best Research-Cell Efficiencies

References

- 2009 US Electricity Consumption DOE-EIA-0383(09) Mar 2009
- J.A. Turner, Science 285 1999, p. 687
- Fractional bandwidth normalization for optical spectra with application to the solar blackbody spectrum, G. Moddel, OCIS 2001
- Supply Curves for Rooftop Solar PV-Generated Electricity for the United States, Technical Report NREL/TP-6A0-22074 Nov 2008
- Third Generation Photovoltaics, G. Conibeer, R. Corkish, M. Green, UNSW School of Photovoltaic and Renewable Energy Engineering
- Organic Tandem and Multi-Junction Solar Cells, A. Hadipour, B. de Boer, P. W. M. Blom, Advanced Functional Materials, Vol. 18 Issue 2, pgs 169-181, 3 Jan 2008
- Images courtesy of Wikipedia

Computational Nanoscience Group

- Notes
 - PCBM = [6,6]-phenyl-C₆₁-butyric acid methyl ester

- Simulations
 - Modeled the system as a lattice of D or A, with hopping probabilities/rates
 - As predicted, large regions with little interface and small regions with too much interface have poor internal quantum efficiency (carrier pairs extracted per photon absorbed)
 - Columns of A embedded in D fared best, but most microstructures were consistent as long as the proportion of same-type neighbors was between 0.65 and 0.8
- ♦ Thermal Damage
 - We could also take a suboptimal ordered structure and damage it to create more interface
 - This led to structures of comparable efficiency without the need for nanostructuring

Parameter	Value
Carrier Separation Rate	1000 ps ⁻¹
Carrier Recombination Rate	10 ps ⁻¹
Exciton Decay Rate	10 ps ⁻¹ (5 nm)
Exciton Generation Rate	50 nm ⁻² ps ⁻¹
Carrier Hopping Rate	~1 nm ps ⁻¹
Electric Field Bias	5 V μm ⁻¹
Temperature	0.025 eV

Molecules often used in MJOPV (vapor deposition)

Molecules often used in MJOPV (solution processed)

